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e geometric diversity of inorganic
and hybrid frameworks through structural coarse-
graining†

Thomas C. Nicholas, Andrew L. Goodwin and Volker L. Deringer *

Much of our understanding of complex structures is based on simplification: for example, metal–organic

frameworks are often discussed in the context of “nodes” and “linkers”, allowing for a qualitative

comparison with simpler inorganic structures. Here we show how such an understanding can be

obtained in a systematic and quantitative framework, combining atom-density based similarity (kernel)

functions and unsupervised machine learning with the long-standing idea of “coarse-graining” atomic

structure. We demonstrate how the latter enables a comparison of vastly different chemical systems, and

we use it to create a unified, two-dimensional structure map of experimentally known tetrahedral AB2

networks – including clathrate hydrates, zeolitic imidazolate frameworks (ZIFs), and diverse inorganic

phases. The structural relationships that emerge can then be linked to microscopic properties of interest,

which we exemplify for structural heterogeneity and tetrahedral density.
Introduction

Establishing links between chemical structure and function is
a key requirement for developing new materials. The synthetic
exploration of solid-state structural space has been documented
in extensive databases,1 and high-throughput computations
and structure prediction are poised to accelerate it even
further.2 In an aim to navigate this vast space, lower-
dimensional representations have been proposed, such as 2D
“maps” with chemically informed coordinates, aiming to
identify promising synthesis targets.3

With machine learning (ML) approaches currently bur-
geoning in materials chemistry,4 it is natural to ask whether
they might help with the aforementioned challenges. ML algo-
rithms can handle very large datasets, but are (deliberately)
chemically agnostic, and it is not a priori clear whether they will
discover the same relationships that a trained chemist iden-
ties just by eye. In this context, “unsupervised”MLmeans that
information is sought from a given set of data without labels5 –
for example, from a mathematical representation of the atomic
structure, for which reliable computational tools are now
available.6

One such representation is given by the Smooth Overlap of
Atomic Positions (SOAP) similarity function, or kernel.6c This
approach builds a neighbour density for any given atom (using
“smooth” Gaussian functions) and then evaluates the overlap
istry Laboratory, University of Oxford,

r@chem.ox.ac.uk

tion (ESI) available. See DOI:

12587
between pairs of such neighbour densities, making use of an
efficient mathematical approach;6c a short review is given in the
Methods section. SOAP thereby quanties how similar any two
given atomic environments are, on an intuitive scale from zero
to one. Initially used for tting machine-learned force elds,7 it
was suggested in 2016 that SOAP can be utilised also for visu-
alising chemical space.8 Applications to date include known
and hypothetical ice structures,9 the TiO2 polymorphs,10

molecular crystals,11 and hypothetical zeolites;12 an overview
including several illustrative examples was given very recently.13

Once a SOAP-based structure map has been created, it can be
used, e.g., to select the most representative structural motifs in
a complex system for computational spectroscopy.14

Very recently, zeolites were studied with SOAP-based maps
and assessed regarding synthesisability.15 These materials are
widely described in terms of their topology. Whilst extremely
powerful, such approaches do not (by construction) include
geometric arguments: two zeolites may differ in their bond
lengths and angles yet share identical topologies, or conversely,
they may have similar geometric features but different
connectivity. SOAP combines all the characteristics of the
neighbour environment up to a given cut-off: it thereby cannot
reproduce the intuitive classication afforded by the well-
known space-group or topology symbols, but in turn gives rise
to a comprehensive geometric measure that incorporates bond
angles, rings, and other subtleties.15

Here, we generalise this approach such that it can make
direct comparisons across vastly different families of chemical
structures, and thereby we develop a framework in which
geometric diversity can be quantied, visualised, and better
understood. The key enabling step is the realisation that
This journal is © The Royal Society of Chemistry 2020
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Fig. 1 Understanding complex tetrahedral inorganic and hybrid
structures by reducing them to the underlying AB2 networks (“coarse-
graining”). (a) The prototypical zeolitic imidazolate framework, ZIF-8,17

can be reduced by placing dummy atoms (represented by yellow
spheres) at the midpoint of the N/N contact inside a single methyl-
imidazolate (mIm) linker. The resulting simplified (“coarse-grained”)
structure contains an “A” atom for each Zn2+ position, and a “B” atom
for each linker: we obtain an open AB2-type structure with four- and
six-membered rings (sod vertex symbol, using the notation pioneered
by O'Keeffe and others; ref. 28). (b) The crystal structure of the inor-
ganic mineral hydro-sodalite19 is based on the same framework
topology. To illustrate this relationship, we remove the (partly occu-
pied) Na sites and the water molecules within the framework, and we
reduce the Al and Si cation sites to a single “A” atom. This way, we arrive
at a representation that looks very similar to that of ZIF-8 above. There
are still differences in the orientation of the individual tetrahedra, and
characteristically different absolute A–B distances, which need to be
re-scaled for proper comparison. (c) Overview of the workflow in the
present study, with database building, processing, and then analysis.
The inset illustrates the concept of SOAP-based distances, d, for a set
of three structures: ZIF-8 and hydro-sodalite (shown above) are quite
similar in their coarse-grained and re-scaled representations; a-quartz
is very different from both. Note that rather than the absolute values, it
is the relative distances between the points which aremost meaningful
(see also Methods section). Structures were visualised using VESTA.29
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a density-based metric such as SOAP can be applied equally well
to coarse-grained and uniformly scaled representations of
chemical structures as to the structures themselves: this allows
us to compare compounds with inherently different chemistries
and bond lengths. With a long-term aim of discovering (and,
ultimately, exploiting) structural relationships, we focus this
proof-of-concept study on one notoriously diverse and impor-
tant family of inorganic and hybrid frameworks: namely, the
AB2-type networks with tetrahedral-like [AB4] environments.

Results and discussion

We start by noting that whilst comparisons across AB2 struc-
tures have been eminently useful,16 they have normally been
limited to individual aspects either of the structure (say, the
A–B–A angles) or topology (thereby removing subtleties of the
structure itself). For example, zeolitic imidazolate frameworks
(ZIFs), such as ZIF-8 (Fig. 1a),17 have been discussed in terms of
the analogy to Si–O–Si angles in SiO2 polymorphs.18 We now use
a computer algorithm for the same task: placing “dummy”
atoms at the midpoint between those (nitrogen) atoms that
connect to the Zn2+ centres, as shown in Fig. 1a (note that this is
not the same as the centre of mass of the entire linker, which
would distort the resulting angles for larger ligands, such as
benzimidazolate).

A classical inorganic example of a more complex AB2 solid is
hydro-sodalite (Fig. 1b).19 In this case, we need to remove intra-
framework Na+ ions and water from consideration; our work-
ows and code are designed to carry out this “clean-up” step in
a largely automated fashion (ESI†). We also discard the chem-
ical distinction between two different cation sites – now repre-
sented by a single “A” dummy atom – but retain any geometric
differences in their local environments. This idea of increasing
the granularity of the structure is in analogy to how coarse-
graining approaches are used for molecular-dynamics simula-
tions that traverse atomistic and larger length scales,20 and how
secondary building units (SBUs) are identied in inorganic
solids and metal–organic frameworks.21 We refer to the result-
ing approach, including removal of guests, coarse-graining, and
re-scaling, as “cg-SOAP” in the following.

To test this idea on a much wider basis of experimentally
validated structures, we assembled a dataset which includes
diverse families of AB2-like materials, including zeolites, ices,
and chain-like inorganic structures such as BeCl2. Among the
data sources, we point out a review article on ZIFs by Yaghi and
co-workers,18a a report on cadmium-based imidazolate frame-
works (“CdIFs”) by Tian et al.,22 and a study of polymorphism in
Zn(CN)2 by Chapman and co-workers.23 More structures were
collected from the Cambridge Structural Database1b and the IZA
Database of Zeolite Structures.1e Key information about this
dataset is collected in Table 1, and full data and references
(including justication for any structures that have been dis-
carded, e.g., because they contain non-tetrahedral environ-
ments) are given as ESI.†

Once the coarse-graining is done, one key step remains
before these very different chemistries can be compared using
SOAP: we re-scale the structures such that the shortest A–B
This journal is © The Royal Society of Chemistry 2020 Chem. Sci., 2020, 11, 12580–12587 | 12581
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Table 1 Overview of the curated database of AB2 structures, and their coarse-grained representations, as developed in the present work. Details
are given in the ESI

Material class A site B site Entries

Zeolites/AlPOs Si, {Al, P}, various others O 245
Silica Si O 9
Cyanides Zn (CN) 4
Other inorganics Be, Zn, Si, {Li, Co} Cl, Cl, S, (CO), respectively 7
Clathrates O H 8
Disordered ices O H 10
Ordered ices O H 6
ZIFs Zn, Cd, Hg, Co, Fe, Cu, Ina Organic 70
CdIFs Cd Organic 12
BIFs {Li, B}, {Cu, B} Organic 6
TIFs Zn Organic 6

a The indium compound (ref. 26) is an example for a different oxidation state (+3) being accommodated by a more complex organic counterpart. In
this specic case, a delicate combination of structure-directing agents was used: the unit cell contains 4,5-imidazoledicarboxylate (Himdc) linkers,
protonated amines balancing the charges, and three different solvents.26 All this complexity is identied and reduced by our approach, transforming
the structure to its fundamental AB2 network.
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distance in any given structure is the same (here, 1.0 Å)24 – an
idea that originated in the eld of chemical topology.25 This is
a step of key importance, because otherwise the overlap of
neighbour densities will be necessarily diminished as soon as
there are different A–B distances (Fig. S5 in the ESI†). The
workow on which the following analysis is based is shown in
Fig. 1c.

The SOAP kernel is a similarity measure between two atomic
environments, k(a,b),6c on a scale from 0 to 1, obtained here
using the openly available DScribe implementation.27 Details
are given in the Methods section. In short, averaging over all
combinations of A-site environments a in the i-th unit cell in
our database and b in the j-th, we obtain a per-cell similarity,
�k(i,j). With this, one may then dene a geometric distance
(dissimilarity) between the i-th and j-th unit cell as

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2k

�
ði; jÞ

q
(1)

to satisfy the triangle inequality (Fig. 1c).8

We now progress to a much larger structure map that
represents distances, obtained from eqn (1), between many
different chemical systems and structure types. To visualise
these distances, we use a basic
unsupervised ML approach, multi-dimensional scaling (MDS) –
a projection into a 2D space which directly takes distances as
input and can thus be coupled to SOAP in a straightforward
way.10,14 Our map is shown in Fig. 2 and spans all entries of our
manually curated database (cf. Table 1), classied according to
inorganic (e.g., SiO2 polymorphs), molecular (e.g., ice networks),
and tetrahedral hybrid networks, viz. ZIFs and related
cadmium-, boron-, or other cation based tetrahedral imidazo-
late frameworks (“TIFs”). We follow the naming conventions in
the existing literature, accepting that the abbreviations will not
always be entirely unambiguous – e.g., for cadmium-based
species: Cd(Im)2-dia-c was labelled as a “ZIF” in ref. 18a,
whereas Cd(mIm)2-sod was initially reported as “CdIF-1” shortly
thereaer.22
12582 | Chem. Sci., 2020, 11, 12580–12587
In the 2D space of Fig. 2, structures that are similar appear
close together, and structures that are dissimilar are further
apart. Some material classes are widely distributed throughout
the space which is spanned by the map, with the widest abso-
lute distribution found for the zeolites (“+”). Hybrid frameworks
(blue symbols) occupy some of this space, but distinctly not all
of it; SiO2 polymorphs and disordered ices (such as the common
ice-I) are widely spread as well, whereas ordered ices are clus-
tered closely together in the bottom le area. In addition to the
absolute distribution across the map, we may quantify the
relative distribution for each materials class, by which we mean
the standard deviation of how far points are from their
respective centre of mass – normalised such that the SiO2

polymorphs have a relative distribution of 1.0. ZIFs (zeolites)
attain values of 1.20 (1.04), respectively. On the other hand, the
ordered ices have a relative distribution of only 0.06, consistent
with lower geometric exibility in their strongly directional
hydrogen-bonded networks.

We now walk through this map in clockwise direction,
having labelled some more specic locations of interest with
boldface numbers. In the lower le part, there is a point where
two structures coincide exactly in the 2D map (1). One is
disordered ice-VII, where we reduce the O–H/H–O bridge (with
both hydrogen sites half-occupied) to an A–B–A link. The other
is the ambient polymorph of zinc cyanide, for which we also
reduce the Zn/C^N/Zn motif to a symmetric A–B–A link
because of head-to-tail orientational disorder of the CN�

linkers. Both phases are based on the same anticuprite struc-
ture, with no internal degrees of freedom; hence the two cor-
responding points coincide perfectly. LiCo(CO)4 adopts a lower-
symmetry variant of the same structure type,30 with the CO
ligand closer to Co than Li – its midpoint is shied along (x, x, x)
from x ¼ 0.25 to 0.241. That structure is therefore almost, but
not exactly, in the same location on the cg-SOAP map in Fig. 2.

Moving up past other disordered ices, the silica polymorphs
begin to appear in the upper le part of the map in Fig. 2. We
illustrate a-quartz, the stable form at ambient conditions (2).
This journal is © The Royal Society of Chemistry 2020
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Fig. 2 A two-dimensional map for inorganic and hybrid tetrahedral structures. The closer two points are, the more similar the corresponding
structures, and vice versa. This visualisation is based on a structural dissimilarity (distance) metric, using the SOAP kernel to compare coarse-
grained and re-scaled structures (cf. Fig. 1c), and on embedding by multi-dimensional scaling (MDS). Different symbols are used for the various
types of inorganic, molecular, and hybrid networks that are all part of our database. Points of interest are marked as 1, 2, and so on, and discussed
in the text in this order.
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Not many hybrid frameworks (blue) are found in its immediate
vicinity, from which we infer that its particular geometry is
relatively unusual in the wider context of AB2 networks. We
move clockwise past more open framework structures, viz. the
faujasite and Na–Y cages (3), and we nd b-quartz near the top
of the map (4). In the immediate vicinity, there is then a rather
largely populated cluster of ZIFs and related structures (all
represented by dark blue symbols). Of note is the cadmium-
based framework, CdIF-1, which has sod topology (cf. Fig. 1b),
and is therefore located alongside other sodalite-type ZIFs.

b-Cristobalite is another high-symmetry structure with no
internal degrees of freedom, located in the upper right part of
the map (5). Aer coarse-graining and re-scaling, cubic ice-I and
dia-Zn(CN)2 occupy exactly the same location; hexagonal ice-I is
very close. We nd a region of clathrate hydrates (6), related to
the “empty” frameworks of the low-density ices III and XVI,
reected in close proximity in the cg-SOAP map. Separated
clearly from the main area of the map, there is then an “island”
of inorganic structures on the right-hand side (7): e.g., SiS2,
which features chains of edge-sharing tetrahedra, very different
This journal is © The Royal Society of Chemistry 2020
from the compositionally homologous SiO2 polymorphs in
which all tetrahedra are corner-sharing.

In the lower right part of Fig. 2, we nd again more open
frameworks. Of note are the boron-based BIFs (8), which
contain Li+ or Cu+ cations in combination with B3+, and there-
fore are aliovalent equivalents to ZIFs (M2+).31 We re-iterate that
even though we reduce the cation sites to a single type of “A”
dummy atom, we do retain the relative differences in bond
lengths around M+ vs. B3+; therefore, the BIF-3 frameworks are
not near other sod structures. Finally, near the bottom of the cg-
SOAP map in Fig. 2, we point out another form of zinc cyanide
(9), emphasising the large variety of polymorphs that is acces-
sible to a single system.23 This particular one adopts the same
topology as hexagonal ice-I (lon) – but in the Zn(CN)2 structure,
the metal/cyanide distances are very dissimilar, about 1.6 and
2.0 Å respectively, and the data point is therefore away from ice-
Ih in the 2D map of Fig. 2. In the context of cyanides, we
mention the even larger structural diversity in Prussian blue
analogues:32 this exemplies a limit of our method in that it
needs discrete positions for the “B” grains, and it cannot
Chem. Sci., 2020, 11, 12580–12587 | 12583
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capture longer-range correlated disorder beyond the pairwise
SOAP cut-off distance. Another limitation of the present
approach is given by large and highly directional linkers such as
[Au(CN)2]

� which lead to incorrect A/A contacts, shorter than
the shortest A–B ones, when dense interpenetrating networks
are considered. An example, with six independent inter-
penetrating nets, is the structure of Zn[Au(CN)2]2;33 related
issues will oen occur for MOFs, where interpenetration is
commonplace.

An important aspect of a materials map is that it should be
able to be correlated with relevant properties.3 The rst quantity
for which we test this question is again concerned with struc-
tural diversity. In Fig. 1c and 2, we had used an averaged metric
to compare different unit cells with one another – but SOAP can
also be used to compare individual atoms within one and the
same structure. We may therefore use it to assess the question
of how diverse the different A-sites in any given structure are,
which we call “A-site SOAP heterogeneity”: a value of zero means
that all A-site environments (normally, metals) are geometri-
cally equivalent, and a higher value indicates a higher degree of
diversity – e.g., in the BIFs, where different aliovalent cationic
species occupy the A site, as mentioned above. This information
can be visualised in a colour-coded version of our map, which is
shown in Fig. 3a.

SOAP maps are beginning to be used to identify properties of
application interest.15 In the context of the present work,
Fig. 3 Geometric diversity in tetrahedral networks analysed with our m
dissimilar cationic environments are within a given structure), colour-cod
to b-cristobalite, colour-coded on the same map. (c) A more quantitative
been collected according to the different categories. The box plots indic
percentile (with a horizontal line indicating the median), and the whisk
horizontal line, the median is zero. (d) Connecting both quantities for fr
entry of our database has been plotted as a function of A-site heterogene
A-site heterogeneity (>0.6), but dense structures require local homogen

12584 | Chem. Sci., 2020, 11, 12580–12587
a central such property is the tetrahedral (“T”) density: this is
the simplest proxy for possible usefulness in catalysis, because
low T densities indicate the presence of voids in the framework,
which could be used for the absorption, diffusion, and trans-
formation of guest molecules – noting that the T density of the
re-scaled framework need not directly correspond to the
accessible pore volume, nor indeed to the density of catalytically
active sites. We show a colour-coded version of our map, illus-
trating the T density, in Fig. 3b. Again, there are clearly different
regions, evidencing the physical signicance of the initially
chemically agnostic unsupervised ML approach. The two
colour-coded maps also show an inherent characteristic of the
2D embedding: it needs to balance all structural aspects, and
therefore the very dense networks at the bottom le are close to
the very open, ordered ices (Fig. 3b). We presume that this is
linked to the A-site heterogeneity, which is low in both groups,
and prohibits the ices from being in the lower right region with
its more diverse A sites (Fig. 3a). It is also an indication of the
need for any embedding scheme to balance local structure
(bringing similar points close together) with aspects of the
global structure (keeping dissimilar points far apart in the 2D
map).

The embedding of high-dimensional distances in 2D
invariably leads to the loss of some information. It is therefore
useful, in addition to the map, to look quantitatively at simi-
larities and properties independent fromwhere a givenmaterial
ethodology. (a) A-site SOAP heterogeneity (that is, a measure for how
ed on the 2Dmap from Fig. 2. (b) Tetrahedral (“T”) density, given relative
analysis of the A-site SOAP heterogeneity, in which the data have now
ate the distribution of data: the boxes range from the 25th to the 75th
ers indicate the full range of data points. For boxes without a visible
amework materials and zeolites: the T density for each corresponding
ity. There is a class of low-density zeolites (“+”) that correlate with large
eity.

This journal is © The Royal Society of Chemistry 2020
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is located in the 2D map. We quantify the distribution of A-site
SOAP heterogeneities, separately for the different materials
classes, in Fig. 3c. Some of the SiO2 polymorphs include locally
heterogeneous environments (the monoclinic structures of
moganite, with heterogeneity 0.27, and coesite, 0.21, are of
note) – but most of them do not, and neither do most other
inorganic AB2 structures. In clathrates, on the other hand, we do
not nd any fully homogeneous structure (even the minimum
value being >0). Disordered ices are overall more heterogeneous
than ordered ones. Among the framework materials, CdIFs are
the least locally heterogeneous, which is perhaps surprising
given the large ionic radius and polarisability of Cd2+; BIFs show
a large, and narrowly distributed, heterogeneity in Fig. 3c, as
expected due to the presence of two different cationic species.

Finally, the information content of Fig. 3a and b can be
combined to study correlations between different property
indicators. We do this for the subset of hybrid frameworks and
zeolites (Fig. 3d). There is a number of fully locally homoge-
neous structures, mainly composed of the different hybrid
framework materials (at a heterogeneity value of x ¼ 0), but
there are also two distinct regions of heterogeneity (up to x¼ 0.6
and beyond it, respectively), dominated by zeolite structures
(“+”). Generally, Fig. 3d reveals that all heterogeneous tetrahe-
dral networks studied have low density, and conversely all dense
networks are homogeneous; there is a distinct region where no
compounds have been experimentally observed, indicated by
shading. It appears reasonable to assume that a too large
geometric mismatch will tend to keep dense structures from
forming. When aiming to design new low-density materials, one
might therefore attempt to introduce and tune A-site hetero-
geneity. The latter can be achieved experimentally, e.g., by
exploiting solid-solution chemistry, both regarding isovalent or
aliovalent cations, and combinations of different linkers.

Conclusions

We have shown how structural relationships across diverse
material families can be understood by combining the idea of
coarse-graining and scaling atomistic structure with a suitable
atom-density based similarity metric (here, SOAP). Our study
has built on experimentally characterised structures and
a carefully curated database of those, but similar approaches
may now be extended to even larger sets of data: to hypothetical
zeolites,34 hybrid perovskites,35 or to a more extensive range of
MOFs,36 for example. Our approach is chemically agnostic on
purpose (allowing us to compare, say, ices with zeolites) –

although we note that the purely geometric SOAP kernel can be
amended with terms that depend on the atomic numbers, or
even with entirely different kernel denitions that capture, e.g.,
similarities in the electronic structure.37 Such combinedmodels
could then extend to application-related properties which are
determined by geometry and chemistry (e.g., catalytic activity).
In regard to visualisation tools, we used one of the simplest (viz.,
MDS), which already leads to appreciable results, but one might
couple our approach to other, more involved dimensionality-
reduction schemes such as the popular sketch-map scheme38

or t-stochastic neighbour embedding39 which are also
This journal is © The Royal Society of Chemistry 2020
beginning to be used with SOAP,8,15 and to openly available
implementations which are beginning to emerge.13,40 To this
end, our database of all coarse-grained representations will be
made openly available online upon publication of this work,
with the hope to enable future work in the community.
Methods

SOAP measures the overlap (that is, the similarity) of pairs of
atomic environments,6c here denoted a and b. To describe the
environment of an atom a, an atomic density, ra(r), is con-
structed by placing Gaussian functions, of broadness s, on the
atomic positions. The neighbour density is then expanded in
a local basis set of suitable radial functions, Rn, and spherical
harmonics, Ylm:

raðrÞ ¼
X
nlm

cnlm
ðaÞRnðrÞYlmð̂rÞ (2)

up to a given nmax and lmax. This way, by collecting the combi-
nation coefficients, cnlm

(a), into a power spectrum vector, pa, one
may then evaluate the similarity of two environments, a and b,
by means of a simple dot product:

k(a,b) ¼ [pa$pb]
z, (3)

where exponentiation by z controls the sharpness of the
distinction between the two environments.6c

We computed SOAP vectors using the polynomial basis
functions implemented in DScribe (https://github.com/
SINGROUP/dscribe/),27 an expansion of the atomic neighbour
density (eqn (2)) up to the available maximum of nmax ¼ 10, lmax

¼ 9, and a radial cut-off of 2.5 Å and a smoothness of s ¼ 0.2 Å
(note that both values refer to re-scaled structures and thus
include next-nearest-neighbour environments). We used a rela-
tively large exponent for the “sharpness” of the kernel (eqn (3)),
viz. z¼ 8, compared to a typical choice of z¼ 4 for ML potential
tting.7a We note that the SOAP implementation in DScribe
differs slightly from that in the original GAP code (available at
http://www.libatoms.org/gap/gap_download.html), e.g., using
fewer descriptor vector entries in multispecies systems, but
these differences are not expected to affect our conceptual
ndings or the interpretation of cg-SOAP maps. For the same
reason, no numerical coordinates are given in the map in Fig. 2,
similar to previous work.8,10,24

We obtained the per-cell similarity, �k(i,j), as

kði; jÞ ¼ 1

NiNj

XNi

a˛i

XNj

b˛j

kða; bÞ; (4)

where a (b) runs over all A sites in the i-th (j-th) cell, respectively,
and the coarse-grained B sites are included in the respective
neighbour densities of the A-sites a and b (details of the A- and
B-site species are given in Table 1). The handling of structures
was aided by the freely available Atomic Simulation Environ-
ment (ASE).41 We note that different ways of dening averaged
kernels (e.g., by averaging over the SOAP expansion coefficients
rather than averaging over the kernel values themselves) have
been proposed;8,10a the optimised choice of these denitions for
Chem. Sci., 2020, 11, 12580–12587 | 12585
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cg-SOAP maps will be the subject of future, more technical
work.

MDS maps were generated using the freely available scikit-
learn package.42 The technique performs a least-squares mini-
misation of the stress, dened as

stress ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i\j

�
dij � d̂ ij

�2
P
i\j

�
dij
�2

vuuuut ; (5)

where dij is the SOAP distance between the i-th and j-th atomic
environment in high-dimensional space (eqn (1)), and d̂ij is the
distance of the corresponding points in the embedded (here,
2D) representation. The stress is zero if the original distances
are fully respected. We obtained a stress value of 0.251, with
convergence dened by a maximum change of 10�5. There is,
hence, an appreciable loss of some part of the high-dimensional
information, but this does not impair the validity of our 2Dmap
(evidenced, e.g., by the visible correlations in Fig. 3a and b).
Taking the SOAP-based distance as input directly, MDS does not
require specic engineering of features or denition of other
hyperparameters. It does require a choice of random seed for
the minimisation, but we conrmed that different choices of
this seed did not change the appearance of the map outside of
numerical differences.
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Condens. Matter Mater. Phys., 2014, 90, 104108; (b) For
a recent overview, see: V. L. Deringer, M. A. Caro and
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